

- Accelerator Frontier
 - AF7: Accelerator Technology R&D
 - Targets and Sources → Co-conveners

Charlotte Barbier (ORNL), barbiercn@ornl.gov
Frederique Pellemoine (FNAL), fpellemo@fnal.gov
Yine Sun (ANL), yinesun@anl.gov

Sources

Yine Sun

Argonne National Lab.

Snowmass Community Planning Meeting

Oct. 5, 2020

Sources: Letter of Interest – Snowmass 2021

We have received 14 LOIs on Sources.

- ☐ High brightness / high average current electron sources:
 - Cathodes
 - Normal and super conducting RF guns
- ☐ High Intensity Positron Sources
- Muon Sources
- ☐ High intensity ion sources:
- ☐ Heavy Ion Sources

It's not too late! You can still submit a LOI at https://www.snowmass21.org/docs/upload.php We are Accelerator Frontier and topical group AF7: Accelerator Technology R&D

Sources LOI Overview

AuthorLOI	Title	Link
M. Biagini	LEMMA: a positron driven muon source for a muon collider	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF4_AF7-135.pdf
G. Bisoffi	INFN Position Paper for Snowmass'21 on Accelerator	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF1_AF7_GBisoffi-LRossi-100.pdf
I. Chaikovska	Physics and technology challenges in generating high intensity positron beams	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF1_AF7_Iryna_Chaikovska-116.pdf
D. Filipetto	Pushing Brightness and Current limits of Normal-Conducting Radiofrequency Electron Sources	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF6_Filippetto-194.pdf
C-K. Huang	Physics-based high-fidelity modeling of high brightness beam injectors	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF1-CompF2_CompF0_Huang-183.pdf
S. Karkare	Prospects for Future Electron Source Development	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF7_Siddharth_Karkare-052.pdf
A. Lumpkin	Mitigationof Emittance Dilution Due to Wakefields in Accelerator Cavities Using Advanced Diagnostics with Machine Learning Techniques	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF7_Lumpkin-132.pdf
N. Moody	Development of next generation rugged electron sources for low emittance, high quantum efficiency, and/or high average current applications	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF0_Nathan_Moody-059.pdf
P. Piot	Bright Electron and Positron Beams and High-Charge Electron Bunches for Beam-driven Structure-WakeField Accelerators	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF6-234.pdf
J. Schieck	A Proton-Based Muon Source for a Collider at CERN	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF4_AF7-EF0_EF0_CTRogers-065.pdf
D. Schulte	Muon Collider Accelerator Facility	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF4_AF7-102.pdf
E. Simakov	High current field emission electron sources for linear colliders and RF source applications	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF6_Evgenya_Simakov-047.pdf
E. Wang	High current high brightness SRF gun	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF0-015.pdf
D. Xie	Production of Heavy Ion Beams with Electron Cyclotron Resonance Ion Sources	https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF7_AF7-017.pdf

Sources: Grand Challenges

- ☐ High Brightness Electron Beams (for ILC, CLIC, FELs, UED/UEM, ERLs, Electron cooling of hadron beams)
 - Cathodes
 - Low Mean Transverse Energy (MTE) small transverse emittance
 - Quantum Efficiency (QE) high QE especially needed for e- cooling and ERLs
 - Emission response time
 - Long Lifetime
 - Compatibility with operation condition
 - Polarization
 - Guns
 - High accelerating gradient
 - High average current
 - Ultra-high vacuum level for good cathode lifetime
 - Injectors
 - Choice of cathodes + guns, and optimization of the injector with accelerating cavities.

Sources: Grand Challenges

- ☐ High Intensity Positron Sources / Muon Sources
 - Positron sources for e+e-/ μ+μ- collider projects (ILC, CLIC, SuperKEKB, FCC-ee, LEMMA, etc.)
 - Polarization;
 - High intensity (orders of magnitude higher than existing positron sources)
 - Positron → µ± (e.g. Low EMittance Muon Accelerator)
 - Proton→muon (MAP Muon source for Muon Collider Collaboration)
- ☐ Heavy Ion Sources
 - High reliability
 - Low emittance

Sources: Required R&D Area

- ☐ High Brightness Electron Beams
 - Cathodes
 - Photocathodes
 - High QE
 - Long lifetime
 - Low TME
 - Polarization
 - » Required for colliders
 - Field emitters
 - Thermionic cathodes
 - Guns
 - DC guns:
 - pushing the gap voltage and accelerating gradient;
 - Reliability;
 - Normal Conducting rf guns:
 - CW operation;
 - Reliability;
 - Super-Conducting rf guns
 - Compatible cathodes;
 - Reliability;
 - Injectors
 - Modeling tools for injector design/simulations;
 - Facilities for injector development.
 - Beam diagnostics and control tools

- ☐ High Intensity Positrons
 - Polarization and intensity
 - Electron→positron
 - Photon→positron
- Protons
 - Production and acceleration of proton beams from high power lasers
- Muons
 - Positron → μ± (e.g. Low EMittance Muon Accelerator)
 - Proton→muon (MAP Muon source for Muon Collider Collaboration)
- Heavy Ions Sources
 - Electron Cyclotron Resonance Ion Sources(ECRISs)
 - Electron Beam Ion Source (EBIS)
 - ...

Sources: Liaison Identification

- ■Accelerator Frontier → AF7: Accelerator Technology
 - Targets/Sources linked in the generation of positrons/muons/hadrons
 - RF/Sources → RF gun design
- \square Accelerator Frontier \rightarrow AF4: e⁺e⁻/ μ ⁺ μ ⁻ collider, EIC
- ■Accelerator Frontier → AF6 AAC: particles sources
- ■Computational Frontier → CompF3: Machine Learning: e.g. Injector optimization
- **.....**